Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Uk Lee,* Yeon-Hwa Jung and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{V}-\mathrm{O})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.096$
Data-to-parameter ratio $=15.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dipotassium bis[hexaaquacobalt(II)] decavanadate tetrahydrate

The title compound, $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, was obtained by reacting CoCl_{2} with KVO_{3} and it was found to crystallize in the triclinic system in space group $P \overline{1}$. The $\mathrm{V} \cdots \mathrm{V}$ distances are in the range 3.050 (1)-3.291 (2) \AA; the four types of $\mathrm{V}-\mathrm{O}$ bond length are in the ranges 1.604 (3)-1.608 (3) $(\mathrm{O} t), 1.902(3)-2.006(3)(\mathrm{O} c), 1.678$ (3)-2.054 (3) (Ob) and 2.105 (3) -2.342 (3) $\AA(\mathrm{O} h)$.

Comment

The decavanadate anion, $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$, is a very stable and typical isopolyanion species of vanadium. Since its structure was reported by Evans (1966), crystal structures of many salts have been characterized, e.g. $\mathrm{K}_{2}\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Evans, 1966), $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Co}_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 16 \mathrm{H}_{2} \mathrm{O}\right.$ (Nowogrocki et al., 1997), $\left[\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{2}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (Higami et al., 2002), and $\mathrm{Na}_{4}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\left[\mathrm{V}_{10} \mathrm{O}_{28}\right] \cdot 17 \mathrm{H}_{2} \mathrm{O}\right.$ (Sun et al., 2002), containing both transition metal complex and alkali metal (or ammonium) cations. The structure of the title compound, $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (I), is isostructural with $\mathrm{K}_{2}\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Evans, 1966).

The configuration of the polyanion is shown in Fig. 1. The centrosymmetric polyanion consists of five independent [VO_{6}] octahedra sharing edges and has approximate $D_{2 h}$ symmetry. The O atoms in the anion can be divided into four groups by the type of coordination, viz. $\mathrm{O} t, \mathrm{O} b, \mathrm{O} c$, and $\mathrm{O} h$, where $\mathrm{O} t$ represents a terminal O atom bound to a V atom, $\mathrm{O} b$

Figure 1
The polyanion structure in $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $1-x, 1-y, 1-z$.]

Received 10 March 2003 Accepted 18 March 2003 Online 23 April 2003

Figure 2
Unit-cell packing of $\mathrm{K}_{2}\left[\mathrm{Co}^{\mathrm{II}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Probable $\mathrm{O} \cdots \mathrm{O}$ hydrogen bonds are shown in red broken lines. [Symmetry code: (i) $1-x$, $1-y, 1-z$; (ii) $-1+x, y, z$; (iii) $x, y,-1+z$; (iv) $1-x, 1-y,-z$; (v) x, $-1+y, z$; (vi) $-x, 1-y, 1-z$; (vii) $1+x, y, z$; (viii) $x, y, 1+z$; (ix) $1-x$, $-y, 1-z$.]
represents a doubly bridging O atom bound to two V atoms, $\mathrm{O} c$ represents a triply bridging O atom bound to three V atoms, and $\mathrm{O} h$ represents a central O atom coordinated to six V atoms. The $\mathrm{V} \cdots \mathrm{V}$ distances are in the range 3.050 (1)3.291 (2) \AA; four types of $\mathrm{V}-\mathrm{O}$ bond length are in the ranges 1.604 (3)-1.608 (3) (Ot), 1.902 (3)-2.006 (3) (Oc), 1.678 (3)$2.054(3)(\mathrm{O} b)$ and $2.105(3)-2.342(3) \AA(\mathrm{O} h)$. The bond lengths and angles of $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ show similar trends to those found in the reference literature. The framework of $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Fig. 2 shows the crystal packing of (I) with the hydrogenbonding interactions. All the O atoms of the anion, except $\mathrm{O} h 1, \mathrm{O} c 3, \mathrm{O} b 6, \mathrm{O} t 13$ and $\mathrm{O} t 14$, form hydrogen bonds with water molecules. The $\left[\mathrm{V}_{10} \mathrm{O}_{28}\right]^{6-}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ ions are linked together by strong hydrogen bonds. The Co^{2+} ion is surrounded by six water molecules in the form of a regular octahedron, with distances ranging from 2.072 (3) to 2.111 (3) \AA. The K^{+}ion is coordinated by eight O atoms, with
distances in the range 2.756 (4)-3.030 (3) \AA. A list of hydrogen-bond distances, involving water molecules, less than $3.1 \AA$ is given in Table 2.

Experimental

Compound (I) was obtained by mixing hot aqueous solutions of $\mathrm{KVO}_{3}(0.5 \mathrm{~g}$ per 20 ml$)$ and $\mathrm{CoCl}_{2}(0.1 \mathrm{~g}$ per 20 ml$)$, and adjusting the pH to about 5.0 with $3 M \mathrm{HNO}_{3}$. The solution was concentrated to about 20 ml by heating in a water bath. After a day, crystals of (I) were isolated at room temperature.

Crystal data

$\mathrm{K}_{2}\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1441.72$
Triclinic, $P \overline{1}$
$a=10.762(2) \AA$
$b=11.122(3) \AA$
$c=8.771(2) \AA$
$\alpha=105.12(2)^{\circ}$
$\beta=109.379(18)^{\circ}$
$\gamma=65.112(18)^{\circ}$
$V=889.3(4) \AA^{\circ}$

$$
Z=1
$$

$D_{x}=2.692 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 28 reflections
$\theta=9.5-10.4^{\circ}$
$\mu=3.78 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Plate, pale brown
$0.13 \times 0.10 \times 0.09 \mathrm{~mm}$

Data collection

Stoe Stadi-4 diffractometer	$\theta_{\max }=27.5^{\circ}$
$\omega / 2 \theta$ scans	$h=-13 \rightarrow 13$
Absorption correction: numerical	$k=-14 \rightarrow 13$
$\quad(X$-SHAPE; Stoe \& Cie, 1996 $)$	$l=0 \rightarrow 11$
$\quad T_{\min }=0.591, T_{\max }=0.704$	3 standard reflections
4092 measured reflections	frequency: 60 min
4092 independent reflections	intensity decay: 3.6%

3403 replections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0464 P)^{2}\right. \\
&+0.7547 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (\AA).

$\mathrm{V} 1-\mathrm{O} h 1^{\mathrm{i}}$	$2.241(2)$	$\mathrm{V} 3-\mathrm{O} c 3$	$1.902(2)$
$\mathrm{V} 1-\mathrm{O} c 2^{\mathrm{i}}$	$2.004(3)$	$\mathrm{V} 3-\mathrm{O} b 6$	$1.678(3)$
$\mathrm{V} 1-\mathrm{O} c 3$	$1.973(2)$	$\mathrm{V} 3-\mathrm{O} b 7$	$1.704(3)$
$\mathrm{V} 1-\mathrm{O} b 4$	$1.826(3)$	$\mathrm{V} 4-\mathrm{O} h 1$	$2.304(2)$
$\mathrm{V} 1-\mathrm{O} b 10^{\mathrm{i}}$	$1.832(3)$	$\mathrm{V} 4-\mathrm{O} b 6$	$2.054(3)$
$\mathrm{V} 1-\mathrm{O} t 11$	$1.608(3)$	$\mathrm{V} 4-\mathrm{O} b 4^{\mathrm{i}}$	$1.841(3)$
$\mathrm{V} 2-\mathrm{O} h 1$	$2.224(2)$	$\mathrm{V} 4-\mathrm{O} b 5$	$1.908(3)$
$\mathrm{V} 2-\mathrm{O} c 2^{\mathrm{i}}$	$2.006(3)$	$\mathrm{V} 4-\mathrm{O} b 9$	$1.832(3)$
$\mathrm{V} 2-\mathrm{O} c 3$	$1.992(3)$	$\mathrm{V} 4-\mathrm{O} t 13$	$1.604(3)$
$\mathrm{V} 2-\mathrm{O} b 5$	$1.811(3)$	$\mathrm{V} 5-\mathrm{O} h 1$	$2.342(3)$
$\mathrm{V} 2-\mathrm{O} b 8$	$1.836(3)$	$\mathrm{V} 5-\mathrm{O} b 7^{\mathrm{i}}$	$2.022(3)$
$\mathrm{V} 2-\mathrm{O} t 12$	$1.604(3)$	$\mathrm{V} 5-\mathrm{O} b 8$	$1.892(3)$
$\mathrm{V} 3-\mathrm{O} h 1$	$2.105(2)$	$\mathrm{V} 5-\mathrm{O} b 9$	$1.841(3)$
$\mathrm{V} 3-\mathrm{O} h 1^{\mathrm{i}}$	$2.124(2)$	$\mathrm{V} 5-\mathrm{O} b 10$	$1.870(3)$
$\mathrm{V} 3-\mathrm{O} c 2$	$1.933(2)$	$\mathrm{V} 5-\mathrm{O} t 14$	$1.594(3)$

Symmetry code: (i) $1-x, 1-y, 1-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} w 1-\mathrm{H} 1 b \cdots \mathrm{O} b 9^{\text {i }}$	0.93	1.83	$2.728(4)$	163
$\mathrm{O} w 1-\mathrm{H} 1 a \cdots \mathrm{O} b 10^{\text {ii }}$	0.93	2.01	$2.925(4)$	166
$\mathrm{O} w 1-\mathrm{H} 1 b \cdots \mathrm{O} w 4$	0.93	2.79	$2.950(4)$	90
$\mathrm{O} w 1-\mathrm{H} 1 a \cdots \mathrm{O} w 5$	0.93	2.99	$3.063(4)$	86
$\mathrm{O} w 1-\mathrm{H} 1 a \cdots \mathrm{O} b 4^{\text {iii }}$	0.93	2.67	$3.069(4)$	107
$\mathrm{O} w 2-\mathrm{H} 2 a \cdots \mathrm{O} c 2$	0.85	1.85	$2.685(3)$	166
$\mathrm{O} w 2-\mathrm{H} 2 b \cdots \mathrm{O} w 5$	1.01	2.63	$2.923(4)$	97
$\mathrm{O} w 2-\mathrm{H} 2 b \cdots \mathrm{O} w 7^{\text {iii }}$	1.01	2.41	$3.063(4)$	122
$\mathrm{O} w 2-\mathrm{H} 2 b \cdots \mathrm{O} t 11^{\text {iii }}$	1.01	2.04	$2.937(4)$	147
$\mathrm{O} w 3-\mathrm{H} 3 b \cdots \mathrm{O} b 8^{\text {i }}$	0.99	1.73	$2.702(4)$	167
$\mathrm{O} w 3-\mathrm{H} 3 a \cdots \mathrm{O} b 8^{\text {iv }}$	0.93	1.84	$2.763(4)$	167
$\mathrm{O} w 4-\mathrm{H} 4 b \cdots \mathrm{O} b 5^{\text {i }}$	0.86	1.99	$2.749(4)$	147
$\mathrm{O} w 4-\mathrm{H} 4 b \cdots \mathrm{O} w 4^{\text {v }}$	0.86	2.59	$3.041(6)$	114
$\mathrm{O} w 4-\mathrm{H} 4 a \cdots \mathrm{O} w 8^{\text {vi }}$	0.93	2.08	$2.949(5)$	154
$\mathrm{O} w 4-\mathrm{H} 4 a \cdots \mathrm{O} t 2^{\text {vi }}$	0.93	2.76	$3.060(4)$	100
$\mathrm{O} w 5-\mathrm{H} 5 b \cdots \mathrm{O} w 7^{\text {iii }}$	0.88	2.08	$2.889(5)$	152
$\mathrm{O} w 6-\mathrm{H} 6 b \cdots \mathrm{O} b 7$	0.91	1.91	$2.804(4)$	170
$\mathrm{O} w 7-\mathrm{H} 7 b \cdots \mathrm{O} b 10^{\text {vii }}$	0.96	2.04	$2.958(4)$	160

Symmetry codes: (i) $x, 1+y, z$; (ii) $2-x, 1-y, 1-z$; (iii) $1+x, y, z$; (iv) $1-x, 1-y, 1-z$; (v) $1-x, 2-y,-z$; (vi) $1-x, 1-y,-z$; (vii) $x-1, y, z-1$.

All H atoms were located in a difference Fourier map and refined as riding on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O})$. The highest
peak in the difference map is $1.26 \AA$ from H5b and the largest hole is 0.80 Å from V3.

Data collection: Stadi4 (Stoe \& Cie, 1996); cell refinement: Stadi4; data reduction: X-RED (Stoe \& Cie, 1996); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

References

Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR, Bonn, Germany.
Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higami, T., Hashimoto, M. \& Okeya, S. (2002). Acta Cryst. C58, i144-i146.
Nowogrocki, G., Baudrin, E., Denis, S. \& Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011-1026.
Sheldrick, G. M. (1997). SHELXS97-2 and SHELXL97-2. University of Göttingen, Germany.
Stoe \& Cie (1996). Stadi4, X-RED and X-SHAPE. Stoe \& Cie GmbH, Hilpertstraße 10, D64295 Darmstadt, Germany.
Sun, Z. G., Long, L. S., Ren, Y. P., Huang, R. B., Zheng, L. S. \& Ng, S. W. (2002). Acta Cryst. E58, i34-i36.

