inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Uk Lee,* Yeon-Hwa Jung and Hea-Chung Joo

Department of Chemistry, Pukyong National University, 599-1 Daeyeon-3dong Nam-ku, Pusan 608-737, South Korea

Correspondence e-mail: uklee@mail.pknu.ac.kr

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(V-O) = 0.003 \text{ Å}$ R factor = 0.036 wR factor = 0.096 Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dipotassium bis[hexaaquacobalt(II)] decavanadate tetrahydrate

The title compound, $K_2[Co^{II}(H_2O)_6]_2[V_{10}O_{28}]\cdot 4H_2O$, was obtained by reacting CoCl₂ with KVO₃ and it was found to crystallize in the triclinic system in space group $P\overline{1}$. The V···V distances are in the range 3.050 (1)–3.291 (2) Å; the four types of V–O bond length are in the ranges 1.604 (3)–1.608 (3) (Ot), 1.902 (3)–2.006 (3) (Oc), 1.678 (3)–2.054 (3) (Ob) and 2.105 (3)–2.342 (3) Å (Oh).

Comment

The decavanadate anion, $[V_{10}O_{28}]^{6-}$, is a very stable and typical isopolyanion species of vanadium. Since its structure was reported by Evans (1966), crystal structures of many salts have been characterized, *e.g.* K₂[Zn(H₂O)₆]₂[V₁₀O₂₈]·4H₂O (Evans, 1966), (NH₄)₂[Co₂[V₁₀O₂₈]·16H₂O (Nowogrocki *et al.*, 1997), $[Na(H_2O)_3]_2[Ni(H_2O)]_2[V_{10}O_{28}]\cdot4H_2O$ (Higami *et al.*, 2002), and Na₄[Ni(H₂O)₆][[V₁₀O₂₈]·17H₂O (Sun *et al.*, 2002), containing both transition metal complex and alkali metal (or ammonium) cations. The structure of the title compound, K₂[Co^{II}(H₂O)₆]₂[V₁₀O₂₈]·4H₂O, (I), is isostructural with K₂[Zn(H₂O)₆]₂[V₁₀O₂₈]·4H₂O (Evans, 1966).

The configuration of the polyanion is shown in Fig. 1. The centrosymmetric polyanion consists of five independent [VO₆] octahedra sharing edges and has approximate D_{2h} symmetry. The O atoms in the anion can be divided into four groups by the type of coordination, *viz*. Ot, Ob, Oc, and Oh, where Ot represents a terminal O atom bound to a V atom, Ob

Figure 1

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved The polyanion structure in $K_2[Co^{II}(H_2O)_6]_2[V_{10}O_{28}]\cdot 4H_2O$. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]

Received 10 March 2003

Accepted 18 March 2003

Online 23 April 2003

 $\theta_{\rm max} = 27.5^{\circ}$

 $l = 0 \rightarrow 11$

 $h = -13 \rightarrow 13$

 $k = -14 \rightarrow 13$

3 standard reflections frequency: 60 min

intensity decay: 3.6%

Figure 2

Unit-cell packing of $K_2[Co^{II}(H_2O)_6]_2[V_{10}O_{28}] \cdot 4H_2O$. Probable O···O hydrogen bonds are shown in red broken lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z; (ii) -1 + x, y, z; (iii) x, y, -1 + z; (iv) 1 - x, 1 - y, -z; (v) x,-1 + y, z; (vi) -x, 1 - y, 1 - z; (vii) 1 + x, y, z; (viii) x, y, 1 + z; (ix) 1 - x,-y, 1-z.]

represents a doubly bridging O atom bound to two V atoms, Oc represents a triply bridging O atom bound to three V atoms, and Oh represents a central O atom coordinated to six V atoms. The V···V distances are in the range 3.050(1)-3.291 (2) Å; four types of V–O bond length are in the ranges 1.604(3)-1.608(3)(Ot), 1.902(3)-2.006(3)(Oc), 1.678(3)-2.054 (3) (Ob) and 2.105 (3)-2.342 (3) Å (Oh). The bond lengths and angles of $[V_{10}O_{28}]^{6-}$ show similar trends to those found in the reference literature. The framework of $[V_{10}O_{28}]^{6-}$ has been studied in detail previously (Evans, 1966; Nowogrocki et al., 1997).

Fig. 2 shows the crystal packing of (I) with the hydrogenbonding interactions. All the O atoms of the anion, except Oh1, Oc3, Ob6, Ot13 and Ot14, form hydrogen bonds with water molecules. The $[V_{10}O_{28}]^{6-}$ and $[Co(H_2O)_6]^{2+}$ ions are linked together by strong hydrogen bonds. The Co^{2+} ion is surrounded by six water molecules in the form of a regular octahedron, with distances ranging from 2.072 (3) to 2.111 (3) Å. The K^+ ion is coordinated by eight O atoms, with

distances in the range 2.756 (4)-3.030 (3) Å. A list of hydrogen-bond distances, involving water molecules, less than 3.1 Å is given in Table 2.

Experimental

Compound (I) was obtained by mixing hot aqueous solutions of KVO₃ (0.5 g per 20 ml) and CoCl₂ (0.1 g per 20 ml), and adjusting the pH to about 5.0 with 3M HNO₃. The solution was concentrated to about 20 ml by heating in a water bath. After a day, crystals of (I) were isolated at room temperature.

Crystal data

$K_{2}[Co(H_{2}O)_{6}]_{2}[V_{10}O_{28}]\cdot 4H_{2}O$	Z = 1
$M_r = 1441.72$	$D_x = 2.692 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.762 (2) Å	Cell parameters from 28
b = 11.122 (3) Å	reflections
c = 8.771 (2) Å	$\theta = 9.5 10.4^{\circ}$
$\alpha = 105.12 \ (2)^{\circ}$	$\mu = 3.78 \text{ mm}^{-1}$
$\beta = 109.379 \ (18)^{\circ}$	T = 298 (2) K
$\gamma = 65.112 \ (18)^{\circ}$	Plate, pale brown
$V = 889.3 (4) \text{ Å}^3$	$0.13 \times 0.10 \times 0.09 \text{ mm}$

Data collection

Stoe Stadi-4 diffractometer $\omega/2\theta$ scans Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996) $T_{\min} = 0.591, T_{\max} = 0.704$ 4092 measured reflections 4092 independent reflections 3403 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.037$	+ 0.7547P]
$wR(F^2) = 0.096$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\rm max} = 0.001$
4092 reflections	$\Delta \rho_{\rm max} = 0.54 \ {\rm e} \ {\rm \AA}^{-3}$
262 parameters	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å).

V1-Oh1 ⁱ	2.241 (2)	V3–Oc3	1.902 (2)
$V1-Oc2^{i}$	2.004 (3)	V3-Ob6	1.678 (3)
V1–Oc3	1.973 (2)	V3-Ob7	1.704 (3)
V1-Ob4	1.826 (3)	V4-Oh1	2.304 (2)
$V1-Ob10^{i}$	1.832 (3)	V4-Ob6	2.054 (3)
V1-Ot11	1.608 (3)	V4–Ob4 ⁱ	1.841 (3)
V2-Oh1	2.224 (2)	V4-Ob5	1.908 (3)
$V2-Oc2^{i}$	2.006 (3)	V4-Ob9	1.832 (3)
V2–Oc3	1.992 (3)	V4-Ot13	1.604 (3)
V2-Ob5	1.811 (3)	V5-Oh1	2.342 (3)
V2-Ob8	1.836 (3)	V5–Ob7 ⁱ	2.022 (3)
V2-Ot12	1.604 (3)	V5-Ob8	1.892 (3)
V3-Oh1	2.105 (2)	V5-Ob9	1.841 (3)
$V3-Oh1^{i}$	2.124 (2)	V5-Ob10	1.870 (3)
V3–Oc2	1.933 (2)	V5-Ot14	1.594 (3)

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
Ow1−H1b····Ob9 ⁱ	0.93	1.83	2.728 (4)	163
$Ow1-H1a\cdots Ob10^{ii}$	0.93	2.01	2.925 (4)	166
$Ow1-H1b\cdots Ow4$	0.93	2.79	2.950 (4)	90
$Ow1-H1a\cdots Ow5$	0.93	2.99	3.063 (4)	86
$Ow1-H1a\cdots Ob4^{iii}$	0.93	2.67	3.069 (4)	107
$Ow2-H2a\cdots Oc2$	0.85	1.85	2.685 (3)	166
$Ow2-H2b\cdots Ow5$	1.01	2.63	2.923 (4)	97
$Ow2-H2b\cdots Ow7^{iii}$	1.01	2.41	3.063 (4)	122
$Ow2-H2b\cdots Ot11^{iii}$	1.01	2.04	2.937 (4)	147
$Ow3-H3b\cdots Ob8^{i}$	0.99	1.73	2.702 (4)	167
$Ow3-H3a\cdots Ob8^{iv}$	0.93	1.84	2.763 (4)	167
$Ow4-H4b\cdots Ob5^{i}$	0.86	1.99	2.749 (4)	147
$Ow4-H4b\cdots Ow4^{v}$	0.86	2.59	3.041 (6)	114
$Ow4-H4a \cdot \cdot \cdot Ow8^{vi}$	0.93	2.08	2.949 (5)	154
$Ow4-H4a\cdots Ot12^{vi}$	0.93	2.76	3.060 (4)	100
$Ow5-H5b\cdots Ow7^{iii}$	0.88	2.08	2.889 (5)	152
$Ow6-H6b\cdots Ob7$	0.91	1.91	2.804 (4)	170
$Ow7-H7b\cdots Ob10^{vii}$	0.96	2.04	2.958 (4)	160

Symmetry codes: (i) x, 1+y, z; (ii) 2-x, 1-y, 1-z; (iii) 1+x, y, z; (iv) 1-x, 1-y, 1-z; (v) 1-x, 2-y, -z; (vi) 1-x, 1-y, -z; (vii) x-1, y, z-1.

All H atoms were located in a difference Fourier map and refined as riding on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(O)$. The highest

peak in the difference map is 1.26 Å from H5*b* and the largest hole is 0.80 Å from V3.

Data collection: *Stadi*4 (Stoe & Cie, 1996); cell refinement: *Stadi*4; data reduction: *X-RED* (Stoe & Cie, 1996); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL*97.

References

- Brandenburg, K. (1998). *DIAMOND*. Version 2.1. Crystal Impact GbR, Bonn, Germany.
- Evans, H. T. Jr (1966). Inorg. Chem. 5, 967-977.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Higami, T., Hashimoto, M. & Okeya, S. (2002). Acta Cryst. C58, i144-i146.
- Nowogrocki, G., Baudrin, E., Denis, S. & Touboul, M. (1997). Eur. J. Solid State Inorg. Chem. 34, 1011–1026.
- Sheldrick, G. M. (1997). SHELXS97-2 and SHELXL97-2. University of Göttingen, Germany.
- Stoe & Cie (1996). *Stadi4, X-RED* and *X-SHAPE*. Stoe & Cie GmbH, Hilpertstraße 10, D64295 Darmstadt, Germany.
- Sun, Z. G., Long, L. S., Ren, Y. P., Huang, R. B., Zheng, L. S. & Ng, S. W. (2002). Acta Cryst. E58, i34–i36.